
1

CS 188: Artificial Intelligence

Lecture 6 and 7: Search for Games

Pieter Abbeel – UC Berkeley

Many slides adapted from Dan Klein

1

Overview

§  Deterministic zero-sum games
§ Minimax
§  Limited depth and evaluation functions for

non-terminal states
§  Alpha-Beta pruning

§  Stochastic games
§  Single player: expectimax
§  Two player: expectiminimax

§  Non-zero-sum games
2

2

Game Playing State-of-the-Art
§  Checkers: Chinook ended 40-year-reign of human world champion Marion

Tinsley in 1994. Used an endgame database defining perfect play for all
positions involving 8 or fewer pieces on the board, a total of
443,748,401,247 positions. Checkers is now solved!

§  Chess: Deep Blue defeated human world champion Gary Kasparov in a
six-game match in 1997. Deep Blue examined 200 million positions per
second, used very sophisticated evaluation and undisclosed methods for
extending some lines of search up to 40 ply. Current programs are even
better, if less historic.

§  Othello: Human champions refuse to compete against computers, which
are too good.

§  Go: Human champions are beginning to be challenged by machines,
though the best humans still beat the best machines. In go, b > 300, so
most programs use pattern knowledge bases to suggest plausible moves,
along with aggressive pruning.

§  Pacman: unknown

3

GamesCrafters

http://gamescrafters.berkeley.edu/
Dan Garcia.

4

3

Game Playing

§  Many different kinds of games!

§  Axes:
§  Deterministic or stochastic?
§  One, two, or more players?
§  Zero sum?
§  Perfect information (can you see the state)?

§  Want algorithms for calculating a strategy
(policy) which recommends a move in each state

6

Deterministic Games

§  Many possible formalizations, one is:
§  States: S (start at s0)
§  Players: P={1...N} (usually take turns)
§  Actions: A (may depend on player / state)
§  Transition Function: SxA → S
§  Terminal Test: S → {t,f}
§  Terminal Utilities: SxP → R

§  Solution for a player is a policy: S → A

7

4

Deterministic Single-Player?
§  Deterministic, single player, perfect

information:
§  Know the rules
§  Know what actions do
§  Know when you win
§  E.g. Freecell, 8-Puzzle, Rubik’s

cube
§  … it’s just search!
§  Slight reinterpretation:

§  Each node stores a value: the best
outcome it can reach

§  This is the maximal outcome of its
children (the max value)

§  Note that we don’t have path sums
as before (utilities at end)

§  After search, can pick move that
leads to best node

§  Often: not enough time to search till
bottom before taking the next action

win lose lose

8

Adversarial Games

§  Deterministic, zero-sum games:
§  Tic-tac-toe, chess, checkers
§  One player maximizes result
§  The other minimizes result

§  Minimax search:
§  A state-space search tree
§  Players alternate turns
§  Each node has a minimax

value: best achievable utility
against a rational adversary

8 2 5 6

max

min

9

2 5

5

Terminal values:
part of the game

Minimax values:
computed recursively

Terminology: ply = all players making a move, game to the right = 1 ply

5

Computing Minimax Values
§  Two recursive functions:

§  max-value maxes the values of successors
§  min-value mins the values of successors

def value(state):
If the state is a terminal state: return the state’s utility
If the next agent is MAX: return max-value(state)
If the next agent is MIN: return min-value(state)

def max-value(state):
Initialize max = -∞
For each successor of state:

Compute value(successor)
Update max accordingly

Return max

Minimax Example

11

12 8 5 2 3 2 14 4 6

6

Tic-tac-toe Game Tree

14

Minimax Properties
§  Optimal against a perfect player. Otherwise?

§  Time complexity?
§  O(bm)

§  Space complexity?
§  O(bm)

§  For chess, b ≈ 35, m ≈ 100
§  Exact solution is completely infeasible
§  But, do we need to explore the whole tree?

10 10 9 100

max

min

15

7

Speeding Up Game Tree Search

§  Evaluation functions for non-terminal
states

§  Pruning: not search parts of the tree
§  Alpha-Beta pruning does so without losing

accuracy, O(bd) à O(bd/2)

16

Resource Limits
§  Cannot search to leaves

§  Depth-limited search
§  Instead, search a limited depth of tree
§  Replace terminal utilities with an eval

function for non-terminal positions

§  Guarantee of optimal play is gone

? ? ? ?

-1 -2 4 9

4
min min

max

-2 4

18

8

Evaluation Functions
§  Function which scores non-terminals

§  Ideal function: returns the utility of the position
§  In practice: typically weighted linear sum of features:

§  e.g. f1(s) = (num white queens – num black queens), etc.
22

Why Pacman Starves

§  He knows his score will go up by eating the dot now (west, east)
§  He knows his score will go up just as much by eating the dot later (east, west)
§  There are no point-scoring opportunities after eating the dot (within the

horizon, two here)
§  Therefore, waiting seems just as good as eating: he may go east, then back

west in the next round of replanning!

9

Evaluation Functions

§  With depth-limited search
§  Partial plan is returned
§ Only first move of partial plan is executed
§ When again maximizer’s turn, run a depth-

limited search again and repeat

§  How deep to search?

25

Iterative Deepening
Iterative deepening uses DFS as a subroutine:

1.  Do a DFS which only searches for paths of
length 1 or less. (DFS gives up on any path of
length 2)

2.  If “1” failed, do a DFS which only searches paths
of length 2 or less.

3.  If “2” failed, do a DFS which only searches paths
of length 3 or less.
 ….and so on.

Why do we want to do this for multiplayer games?

Note: wrongness of eval functions matters less and

less the deeper the search goes

…
b

26

10

Speeding Up Game Tree Search

§  Evaluation functions for non-terminal
states

§  Pruning: not search parts of the tree
§  Alpha-Beta pruning does so without losing

accuracy, O(bd) à O(bd/2)

27

Minimax Example

28

12 8 5 2 3 2 14 4 1

11

Pruning

29

3 12 8 2 14 5 2

Alpha-Beta Pruning

§  General configuration
§  We’re computing the MIN-

VALUE at n
§  We’re looping over n’s

children
§  n’s value estimate is dropping
§  a is the best value that MAX

can get at any choice point
along the current path

§  If n becomes worse than a,
MAX will avoid it, so can stop
considering n’s other children

§  Define b similarly for MIN

MAX

MIN

MAX

MIN

a

n

31

12

Alpha-Beta Pruning Example

12 5 1 3 2

8

14

≥8

3 ≤2 ≤1

3

a is MAX’s best alternative here or above
b is MIN’s best alternative here or above

Alpha-Beta Pruning Example

12 5 1 3 2

8

14

≥8

3 ≤2 ≤1

3

a is MAX’s best alternative here or above
b is MIN’s best alternative here or above

a=-∞
b=+∞

a=-∞
b=+∞

a=-∞
b=+∞

a=-∞
b=3

a=-∞
b=3

a=-∞
b=3

a=-∞
b=3

a=8
b=3

a=3
b=+∞

a=3
b=+∞

a=3
b=+∞

a=3
b=+∞

a=3
b=2

a=3
b=+∞

a=3
b=14

a=3
b=5

a=3
b=1

Starting a/b

Raising a

Lowering b

Raising a

13

Alpha-Beta Pseudocode

b

v

Alpha-Beta Pruning Properties
§  This pruning has no effect on final result at the root

§  Values of intermediate nodes might be wrong!

§  Good child ordering improves effectiveness of pruning
§  Heuristic: order by evaluation function or based on previous search

§  With “perfect ordering”: (what is the perfect ordering?)
§  Time complexity drops to O(bm/2)
§  Doubles solvable depth!
§  Full search of, e.g. chess, is still hopeless…

§  This is a simple example of metareasoning (computing
about what to compute)

35

14

Action at Root Node

§  Values of intermediate nodes might be wrong!

§  What if we ask what action to take? Have to be
careful!!!
§  Soln. 1: separate alpha-beta for each child of the root

node, and we continue to prune with equality
§  Soln. 2: prune with inequality

§  Soln. 3: alter alpha-beta just at the root to only prune
with inequality

36

Expectimax Search Trees
§  What if we don’t know what the result

of an action will be? E.g.,
§  In solitaire, next card is unknown
§  In minesweeper, mine locations
§  In pacman, the ghosts act randomly

§  Can do expectimax search to
maximize average score
§  Chance nodes, like min nodes, except

the outcome is uncertain
§  Calculate expected utilities
§  Max nodes as in minimax search
§  Chance nodes take average

(expectation) of value of children

§  Later, we’ll learn how to formalize the
underlying problem as a Markov
Decision Process (which will in
essence make expectimax tree
search into expectimax graph search) 37

10 4 5 7

max

chance

10 10 9 100

15

Expectimax Pseudocode
def value(s)

 if s is a max node return maxValue(s)
 if s is an exp node return expValue(s)
 if s is a terminal node return evaluation(s)

def maxValue(s)

 values = [value(s’) for s’ in successors(s)]
 return max(values)

def expValue(s)

 values = [value(s’) for s’ in successors(s)]
 weights = [probability(s, s’) for s’ in successors(s)]
 return expectation(values, weights)

8 4 5 6

38

Expectimax Quantities

39

12 9 6 0 3 2 15 4 6

16

Expectimax Pruning?

40

12 9 3 2 4

Depth-Limited Expectimax

…

…

492 362 …

400 300
Estimate of true
expectimax value
(which would
require a lot of
work to compute)

1
se

ar
ch

 p
ly

17

What Utilities to Use?
§  For minimax, terminal function scale doesn’t matter

§  We just want better states to have higher evaluations
(get the ordering right)

§  We call this insensitivity to monotonic transformations

§  For expectimax, we need magnitudes to be meaningful

0 40 20 30 x2 0 1600 400 900

What Probabilities to Use?
§  In expectimax search, we have

a probabilistic model of how the
opponent (or environment) will
behave in any state
§  Model could be a simple

uniform distribution (roll a die)
§  Model could be sophisticated

and require a great deal of
computation

§  We have a node for every
outcome out of our control:
opponent or environment

§  The model might say that
adversarial actions are likely!

§  For now, assume for any state
we magically have a distribution
to assign probabilities to
opponent actions / environment
outcomes Having a probabilistic belief about

an agent’s action does not mean
that agent is flipping any coins! 44

18

Reminder: Probabilities
§  A random variable represents an event whose outcome is unknown
§  A probability distribution is an assignment of weights to outcomes

§  Example: traffic on freeway?
§  Random variable: T = whether there’s traffic
§  Outcomes: T in {none, light, heavy}
§  Distribution: P(T=none) = 0.25, P(T=light) = 0.55, P(T=heavy) = 0.20

§  Some laws of probability (more later):
§  Probabilities are always non-negative
§  Probabilities over all possible outcomes sum to one

§  As we get more evidence, probabilities may change:
§  P(T=heavy) = 0.20, P(T=heavy | Hour=8am) = 0.60
§  We’ll talk about methods for reasoning and updating probabilities later

45

Reminder: Expectations
§  We can define function f(X) of a random variable X

§  The expected value of a function is its average value,
weighted by the probability distribution over inputs

§  Example: How long to get to the airport?
§  Length of driving time as a function of traffic:

L(none) = 20, L(light) = 30, L(heavy) = 60
§  What is my expected driving time?

§  Notation: E[L(T)]
§  Remember, P(T) = {none: 0.25, light: 0.5, heavy: 0.25}

§  E[L(T)] = L(none) * P(none) + L(light) * P(light) + L(heavy) * P(heavy)

§  E[L(T)] = (20 * 0.25) + (30 * 0.5) + (60 * 0.25) = 35

46

19

Expectimax for Pacman
§  Notice that we’ve gotten away from thinking that the

ghosts are trying to minimize pacman’s score
§  Instead, they are now a part of the environment
§  Pacman has a belief (distribution) over how they will act
§  Quiz: Can we see minimax as a special case of

expectimax?
§  Quiz: what would pacman’s computation look like if we

assumed that the ghosts were doing 1-ply minimax and
taking the result 80% of the time, otherwise moving
randomly?

§  If you take this further, you end up calculating belief
distributions over your opponents’ belief distributions
over your belief distributions, etc…
§  Can get unmanageable very quickly!

47

Expectimax for Pacman

Minimizing
Ghost

Random
Ghost

Minimax
Pacman

Won 5/5

Avg. Score:
493

Won 5/5

Avg. Score:
483

Expectimax
Pacman

Won 1/5

Avg. Score:
-303

Won 5/5

Avg. Score:
503

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble
Ghost used depth 2 search with an eval function that seeks Pacman

20

Mixed Layer Types
§  E.g. backgammon
§  Expectiminimax (!)

§  Environment is an
extra player that moves
after each agent

§  Chance nodes take
expectations, otherwise
like minimax

49

Stochastic Two-Player
§  Dice rolls increase b: 21 possible rolls

with 2 dice
§  Backgammon ≈ 20 legal moves
§  Depth 2 = 20 x (21 x 20)3 = 1.2 x 109

§  As depth increases, probability of
reaching a given search node shrinks
§  So usefulness of search is diminished
§  So limiting depth is less damaging
§  But pruning is trickier…

§  TDGammon uses depth-2 search +
very good evaluation function +
reinforcement learning:
world-champion level play

§  1st AI world champion in any game!

21

Multi-Agent Utilities
§  Similar to

minimax:
§  Terminals have

utility tuples
§  Node values

are also utility
tuples

§  Each player
maximizes its
own utility and
propagate (or
back up) nodes
from children

§  Can give rise
to cooperation
and
competition
dynamically…

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5

51

Recap Games
§  Want algorithms for calculating a strategy (policy) which

recommends a move in each state
§  Deterministic zero-sum games

§  Minimax
§  Alpha-Beta pruning (retains optimality):

§  speed-up up to: O(bd) à O(bd/2)
§  Speed-up (suboptimal): Limited depth and evaluation functions
§  Iterative deepening (can help alpha-beta through ordering!)

§  Stochastic games
§  Expectimax

§  Non-zero-sum games

52

