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CS 188: Artificial Intelligence 
 

Lecture 6 and 7: Search for Games 

Pieter Abbeel – UC Berkeley 

Many slides adapted from Dan Klein 

1 

Overview 

§  Deterministic zero-sum games 
§ Minimax 
§  Limited depth and evaluation functions for 

non-terminal states 
§  Alpha-Beta pruning 

§  Stochastic games 
§  Single player: expectimax 
§  Two player: expectiminimax 

§  Non-zero-sum games 
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Game Playing State-of-the-Art 
§  Checkers: Chinook ended 40-year-reign of human world champion Marion 

Tinsley in 1994. Used an endgame database defining perfect play for all 
positions involving 8 or fewer pieces on the board, a total of 
443,748,401,247 positions.  Checkers is now solved! 

§  Chess: Deep Blue defeated human world champion Gary Kasparov in a 
six-game match in 1997. Deep Blue examined 200 million positions per 
second, used very sophisticated evaluation and undisclosed methods for 
extending some lines of search up to 40 ply.  Current programs are even 
better, if less historic. 

§  Othello: Human champions refuse to compete against computers, which 
are too good. 

§  Go: Human champions are beginning to be challenged by machines, 
though the best humans still beat the best machines. In go, b > 300, so 
most programs use pattern knowledge bases to suggest plausible moves, 
along with aggressive pruning. 

§  Pacman: unknown 
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GamesCrafters 

http://gamescrafters.berkeley.edu/ 
Dan Garcia.   
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Game Playing 

§  Many different kinds of games! 

§  Axes: 
§  Deterministic or stochastic? 
§  One, two, or more players? 
§  Zero sum? 
§  Perfect information (can you see the state)? 

§  Want algorithms for calculating a strategy 
(policy) which recommends a move in each state 
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Deterministic Games 

§  Many possible formalizations, one is: 
§  States: S (start at s0) 
§  Players: P={1...N} (usually take turns) 
§  Actions: A (may depend on player / state) 
§  Transition Function: SxA → S 
§  Terminal Test: S → {t,f} 
§  Terminal Utilities: SxP → R 

§  Solution for a player is a policy: S → A 
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Deterministic Single-Player? 
§  Deterministic, single player, perfect 

information: 
§  Know the rules 
§  Know what actions do 
§  Know when you win 
§  E.g. Freecell, 8-Puzzle, Rubik’s 

cube 
§  … it’s just search! 
§  Slight reinterpretation: 

§  Each node stores a value: the best 
outcome it can reach 

§  This is the maximal outcome of its 
children (the max value) 

§  Note that we don’t have path sums 
as before (utilities at end) 

§  After search, can pick move that 
leads to best node 

§  Often: not enough time to search till 
bottom before taking the next action 

win lose lose 
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Adversarial Games 

§  Deterministic, zero-sum games: 
§  Tic-tac-toe, chess, checkers 
§  One player maximizes result 
§  The other minimizes result 

§  Minimax search: 
§  A state-space search tree 
§  Players alternate turns 
§  Each node has a minimax 

value: best achievable utility 
against a rational adversary 
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Terminal values: 
part of the game  

Minimax values: 
computed recursively 

Terminology: ply = all players making a move, game to the right = 1 ply 
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Computing Minimax Values 
§  Two recursive functions: 

§  max-value maxes the values of successors 
§  min-value mins the values of successors 

 

def value(state): 
If the state is a terminal state: return the state’s utility 
If the next agent is MAX: return max-value(state) 
If the next agent is MIN: return min-value(state) 

def max-value(state): 
Initialize max = -∞ 
For each successor of state: 

Compute value(successor) 
Update max accordingly 

Return max 

Minimax Example 
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Tic-tac-toe Game Tree 
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Minimax Properties 
§  Optimal against a perfect player.  Otherwise? 

§  Time complexity? 
§  O(bm) 

§  Space complexity? 
§  O(bm) 

§  For chess, b ≈ 35, m ≈ 100 
§  Exact solution is completely infeasible 
§  But, do we need to explore the whole tree? 

10 10 9 100 

max 

min 
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Speeding Up Game Tree Search 

§  Evaluation functions for non-terminal 
states 

§  Pruning: not search parts of the tree 
§  Alpha-Beta pruning does so without losing 

accuracy,  O(bd)  à O(bd/2) 
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Resource Limits 
§  Cannot search to leaves 

§  Depth-limited search 
§  Instead, search a limited depth of tree 
§  Replace terminal utilities with an eval 

function for non-terminal positions 

§  Guarantee of optimal play is gone 
 

? ? ? ? 

-1 -2 4 9 
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Evaluation Functions 
§  Function which scores non-terminals 

§  Ideal function: returns the utility of the position 
§  In practice: typically weighted linear sum of features: 

§  e.g. f1(s) = (num white queens – num black queens), etc. 
22 

Why Pacman Starves 

§  He knows his score will go up by eating the dot now (west, east) 
§  He knows his score will go up just as much by eating the dot later (east, west) 
§  There are no point-scoring opportunities after eating the dot (within the 

horizon, two here) 
§  Therefore, waiting seems just as good as eating: he may go east, then back 

west in the next round of replanning! 
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Evaluation Functions 

§  With depth-limited search 
§  Partial plan is returned 
§ Only first move of partial plan is executed 
§ When again maximizer’s turn, run a depth-

limited search again and repeat 

§  How deep to search? 
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Iterative Deepening 
Iterative deepening uses DFS as a subroutine: 
 

1.  Do a DFS which only searches for paths of 
length 1 or less.  (DFS  gives up on any path of 
length 2) 

2.  If “1” failed, do a DFS which only searches paths 
of length 2 or less. 

3.  If “2” failed, do a DFS which only searches paths 
of length 3 or less. 
    ….and so on. 

 
 
Why do we want to do this for multiplayer games? 
 
Note: wrongness of eval functions matters less and 

less the deeper the search goes 

…
b
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Speeding Up Game Tree Search 

§  Evaluation functions for non-terminal 
states 

§  Pruning: not search parts of the tree 
§  Alpha-Beta pruning does so without losing 

accuracy,  O(bd)  à O(bd/2) 
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Minimax Example 
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Pruning 

29 

3 12 8 2 14 5 2 

Alpha-Beta Pruning 

§  General configuration 
§  We’re computing the MIN-

VALUE at n 
§  We’re looping over n’s 

children 
§  n’s value estimate is dropping 
§  a is the best value that MAX 

can get at any choice point 
along the current path 

§  If n becomes worse than a, 
MAX will avoid it, so can stop 
considering n’s other children 

§  Define b similarly for MIN 

MAX 

MIN 

MAX 

MIN 

a 

n 
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Alpha-Beta Pruning Example 

12 5 1 3 2 

8 

14 

≥8 

3 ≤2 ≤1 

3 

a is MAX’s best alternative here or above 
b is MIN’s best alternative here or above 

Alpha-Beta Pruning Example 

12 5 1 3 2 

8 

14 

≥8 

3 ≤2 ≤1 

3 

a is MAX’s best alternative here or above 
b is MIN’s best alternative here or above 

a=-∞ 
b=+∞ 

a=-∞ 
b=+∞ 

a=-∞ 
b=+∞ 

a=-∞ 
b=3 

a=-∞ 
b=3 

a=-∞ 
b=3 

a=-∞ 
b=3 

a=8 
b=3 

a=3 
b=+∞ 

a=3 
b=+∞ 

a=3 
b=+∞ 

a=3 
b=+∞ 

a=3 
b=2 

a=3 
b=+∞ 

a=3 
b=14 

a=3 
b=5 

a=3 
b=1 

Starting a/b 

Raising a 

Lowering b 

Raising a 
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Alpha-Beta Pseudocode 

b 

v 

Alpha-Beta Pruning Properties 
§  This pruning has no effect on final result at the root 

§  Values of intermediate nodes might be wrong! 

§  Good child ordering improves effectiveness of pruning 
§  Heuristic: order by evaluation function or based on previous search 

§  With “perfect ordering”: (what is the perfect ordering?) 
§  Time complexity drops to O(bm/2) 
§  Doubles solvable depth! 
§  Full search of, e.g. chess, is still hopeless… 

§  This is a simple example of metareasoning (computing 
about what to compute) 

35 
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Action at Root Node 

§  Values of intermediate nodes might be wrong! 

§  What if we ask what action to take?  Have to be 
careful!!! 
§  Soln. 1:  separate alpha-beta for each child of the root 

node, and we continue to prune with equality 
§  Soln. 2:   prune with inequality 

§  Soln. 3:   alter alpha-beta just at the root to only prune 
with inequality 
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Expectimax Search Trees 
§  What if we don’t know what the result 

of an action will be? E.g., 
§  In solitaire, next card is unknown 
§  In minesweeper, mine locations 
§  In pacman, the ghosts act randomly 

§  Can do expectimax search to 
maximize average score 
§  Chance nodes, like min nodes, except 

the outcome is uncertain 
§  Calculate expected utilities 
§  Max nodes as in minimax search 
§  Chance nodes take average 

(expectation) of value of children 

§  Later, we’ll learn how to formalize the 
underlying problem as a Markov 
Decision Process (which will in 
essence make expectimax tree 
search into expectimax graph search) 37 
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chance 
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Expectimax Pseudocode 
def value(s) 

 if s is a max node return maxValue(s) 
 if s is an exp node return expValue(s) 
 if s is a terminal node return evaluation(s) 

 
def maxValue(s) 

 values = [value(s’) for s’ in successors(s)] 
 return max(values) 

 
def expValue(s) 

 values = [value(s’) for s’ in successors(s)] 
 weights = [probability(s, s’) for s’ in successors(s)] 
 return expectation(values, weights) 

 
 
 

8 4 5 6 
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Expectimax Quantities 

39 

12 9 6 0 3 2 15 4 6 
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Expectimax Pruning? 

40 

12 9 3 2 4 

Depth-Limited Expectimax 

… 

… 

492 362 … 

400 300 
Estimate of true 
expectimax value 
(which would 
require a lot of 
work to compute) 

1 
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What Utilities to Use? 
§  For minimax, terminal function scale doesn’t matter 

§  We just want better states to have higher evaluations 
(get the ordering right) 

§  We call this insensitivity to monotonic transformations 

§  For expectimax, we need magnitudes to be meaningful 

0 40 20 30 x2 0 1600 400 900 

What Probabilities to Use? 
§  In expectimax search, we have 

a probabilistic model of how the 
opponent (or environment) will 
behave in any state 
§  Model could be a simple 

uniform distribution (roll a die) 
§  Model could be sophisticated 

and require a great deal of 
computation 

§  We have a node for every 
outcome out of our control: 
opponent or environment 

§  The model might say that 
adversarial actions are likely! 

§  For now, assume for any state 
we magically have a distribution 
to assign probabilities to 
opponent actions / environment 
outcomes Having a probabilistic belief about 

an agent’s action does not mean 
that agent is flipping any coins! 44 
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Reminder: Probabilities 
§  A random variable represents an event whose outcome is unknown 
§  A probability distribution is an assignment of weights to outcomes 

§  Example: traffic on freeway? 
§  Random variable: T = whether there’s traffic 
§  Outcomes: T in {none, light, heavy} 
§  Distribution: P(T=none) = 0.25, P(T=light) = 0.55, P(T=heavy) = 0.20 

§  Some laws of probability (more later): 
§  Probabilities are always non-negative 
§  Probabilities over all possible outcomes sum to one 

§  As we get more evidence, probabilities may change: 
§  P(T=heavy) = 0.20, P(T=heavy | Hour=8am) = 0.60 
§  We’ll talk about methods for reasoning and updating probabilities later 
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Reminder: Expectations 
§  We can define function f(X) of a random variable X 

§  The expected value of a function is its average value, 
weighted by the probability distribution over inputs 

§  Example: How long to get to the airport? 
§  Length of driving time as a function of traffic: 

L(none) = 20, L(light) = 30, L(heavy) = 60 
§  What is my expected driving time? 

§  Notation: E[ L(T) ] 
§  Remember, P(T) = {none: 0.25, light: 0.5, heavy: 0.25} 

§  E[ L(T) ] = L(none) * P(none) + L(light) * P(light) + L(heavy) * P(heavy) 

§  E[ L(T) ] = (20 * 0.25) + (30 * 0.5) + (60 * 0.25) = 35 
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Expectimax for Pacman 
§  Notice that we’ve gotten away from thinking that the 

ghosts are trying to minimize pacman’s score 
§  Instead, they are now a part of the environment 
§  Pacman has a belief (distribution) over how they will act 
§  Quiz: Can we see minimax as a special case of 

expectimax? 
§  Quiz: what would pacman’s computation look like if we 

assumed that the ghosts were doing 1-ply minimax and 
taking the result 80% of the time, otherwise moving 
randomly? 

§  If you take this further, you end up calculating belief 
distributions over your opponents’ belief distributions 
over your belief distributions, etc… 
§  Can get unmanageable very quickly! 
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Expectimax for Pacman 

Minimizing 
Ghost 

Random 
Ghost 

Minimax 
Pacman 

Won 5/5 
 

Avg. Score: 
493 

Won 5/5 
 

Avg. Score: 
483 

Expectimax 
Pacman 

Won 1/5 
 

Avg. Score: 
-303 

Won 5/5 
 

Avg. Score: 
503 

Results from playing 5 games 

Pacman used depth 4 search with an eval function that avoids trouble 
Ghost used depth 2 search with an eval function that seeks Pacman 
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Mixed Layer Types 
§  E.g. backgammon 
§  Expectiminimax (!) 

§  Environment is an 
extra player that moves 
after each agent 

§  Chance nodes take 
expectations, otherwise 
like minimax 
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Stochastic Two-Player 
§  Dice rolls increase b: 21 possible rolls 

with 2 dice 
§  Backgammon ≈ 20 legal moves 
§  Depth 2 = 20 x (21 x 20)3 = 1.2 x 109 

§  As depth increases, probability of 
reaching a given search node shrinks 
§  So usefulness of search is diminished 
§  So limiting depth is less damaging 
§  But pruning is trickier… 

§  TDGammon uses depth-2 search + 
very good evaluation function + 
reinforcement learning:  
world-champion level play 

§  1st AI world champion in any game! 
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Multi-Agent Utilities 
§  Similar to 

minimax: 
§  Terminals have 

utility tuples 
§  Node values 

are also utility 
tuples 

§  Each player 
maximizes its 
own utility and 
propagate (or 
back up) nodes 
from children 

§  Can give rise 
to cooperation 
and 
competition 
dynamically… 

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5 
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Recap Games 
§  Want algorithms for calculating a strategy (policy) which 

recommends a move in each state 
§  Deterministic zero-sum games 

§  Minimax 
§  Alpha-Beta pruning (retains optimality):  

§  speed-up up to: O(bd)  à O(bd/2) 
§  Speed-up (suboptimal): Limited depth and evaluation functions 
§  Iterative deepening (can help alpha-beta through ordering!) 

§  Stochastic games 
§  Expectimax 

§  Non-zero-sum games 
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